Archives For December 2012

This time of year is a busy one, made busier with my additional work on a science outreach project. I will post details on this project once our Kickstarter page goes live. It will be an exciting one, and I promise to provide details on the techniques I employed for my portion of the promo video. This busy time of year led me to write less posts, but do not fret. Today I discuss a topic slightly removed from science and medicine, and that topic is science fiction. This should provide a nice reprieve for a holiday season.

A friend recently asked, “What genre do you read the most? And what is your opinion of science fiction?” Both of those questions require complex answers, and I am not an authority on the latter topic. However, I’ll tell you what draws me to science fiction, even though most of my reading is on Pubmed or arXiv and novels I read are rooted more in ethics and philosophy than in science fiction or fantasy (see: “Zen and the Art of Motorcycle Maintenance”, “Ishmael”). Science fiction is more than phasers, hyperdrive, ansibles, and soylent green.

The genre begins at our present reality and extends it. Concepts from science,medicine, and even politics are nudged to new heights, and a story is birthed. Suspension of disbelief is often required. Unlike fantasy or even magical realism, the story is deemed plausible, as explanations are required from the author. For example, faster than light communication, a technology that breaks our current understanding of the universe, requires some mechanism. This extension of reality allows writers to do something wonderful. They explore social structures, morality, religion, and more. It is this that makes the genre wonderful. While I may not agree with the science in science fiction, that word, “science,” implies a level of critical thinking. The memorable stories from the genre apply such critical thinking to contemporary issues, and they delve into fundamental questions in philosophy. This is not a requirement for the genre, but it is what draws me to its best works.

Every genre has traits like this. Biographies, for example, relay information about a person’s life experiences. However, these books may also impart wisdom through lessons gleaned by the protagonist. In Team of Rivals, we learn that a former President was inspired by a cabinet with whom he disagreed. In one of Richard Feynman’s memoirs, we learn lessons of love and humility. For example, he tells the story of a pen commissioned by NASA that could write in microgravity. After months of work and significant money spent, the team revealed their “space pen” to the Soviets. Moscow responded, stating that they solved the problem by using pencils! This lesson, gleaned from a memoir, taught me a valuable lesson. This function of biographies is what raises their quality and timelessness. Fantasy provides similar critiques of society, yet it functions as an escape mechanism from the challenges of a difficult life.

Nonfiction educates, yet it is limited by the constraints of reality. Science fiction takes realty and extends it. Star Trek asked, “What makes us human?” Ender’s Game delved into questions of militarism and genocide. Many writers, such as Orwell, Huxley, and Bradbury, created dystopias where a flicker in decision making led to a scary world. These were rooted in the contexts of the time, and we still reference such works when critiquing current societal measures.

So, what is my take on science fiction? While myriad laws are broken in the writing of these novels, I am drawn to them. These novels apply the scientific method in a work of fiction. They ask a question about an alternate reality, create and experiment with this reality with an artistic license, and draw a set of conclusions from the simulations they employ. We can debate the lessons learned from such novels. That debate alone is further evidence that the works initiated a conversation.

However, remember this: Orson Scott Card really has no idea how time dilation works.

Every year, I read an article written in 1972 by P.W. Anderson, More is Different. This exercise provides two functions. On one hand, it is a kind of ritualistic experience through which I can reflect on the past year. On the other, it allows me to revisit the paper with an expanded knowledge base. The paper revisits an age-old discussion in science: Are less fundamental fields of research simply applied versions of their counterparts?

In 1965, V.F. Weisskopf, in an essay entitled In Defence of High Energy Physics, delineated two types of fields. One, which he called intensive, sought after fundamental laws. The other, extensive, used these fundamental laws to explain various phenomena. In other words, extensive research is simply applied intensive research. In many ways, various fields are closer in proximity to fundamental laws than others. Most of neuroscience is more fundamental than psychology, in that it is reduced to smaller scales and focuses on simpler parts of a more complex system. This psychology, however, is closer to its fundamental laws than the social sciences. Again, where psychology focuses on the workings of individual and small-group dynamics, social sciences use many of these laws to explain their work. Molecular biology is seen as more fundamental than cell biology. Chemistry is less fundamental than many-body physics, which is less fundamental than particle physics. The argument by Weisskopf seems to be in favor when discussing fields in terms of their size scale.

Changes between size scale, however, leads us to a discussion of symmetry. Anderson begins his discussion with the example of ammonia. This molecule forms a pyramid, with one nitrogen at its ‘peak’ and three hydrogrens forming the base. A problem arises, however. When discussing a nucleus, we see that there is no dipole moment, or no net direction of charge. However, the negative nitrogen and positive hydrogens form a structure that disobeys this law, or so one might think. It actually turns out that symmetry is preserved through tunneling of the nitrogen, flipping the structure and creating a net dipole moment of zero. Simply put, symmetry is preserved. Weisskopf’s argument continues to hold, even with the scale change.

However, when the molecule becomes very large, such as sugars made by living systems, this inversion no longer occurs, and the symmetry is broken. The fundamental laws applied at the level of the nucleus now no longer hold. Additionally, one can ask: Knowing only what we learned about the symmetry of a nucleus, could we then infer the behavior of ammonia, glucose, crystal lattices, or other complex structures? The fundamental laws, while still applied to the system, do not capture the behavior at this new scale. On top of that, very large systems break the symmetry entirely.

Andersen goes on to discuss a number of other possibilities. In addition to structure, he analyses time dependence, conductivity, and the transfer of information. In particular, consider the crystal that carries information in living systems: DNA. Here, we have a structure that need not be symmetric, and new laws of information transfer arise from this structure and its counterparts that would not be predicted from particle physics or many-body physics alone.  Considering the DNA example, we must then ask ourselves: Can questions in social sciences, psychology, and biology be explained by DNA alone? We are often tempted, and rightfully so, to reduce these complex systems to changes in our DNA structure. This much is true. However, can we predictably rebuild the same social psychology from such a simple code? With the addition of epigenetics, we are trying to do so, but I argue that we are not yet there. In fact, I argue that we never will be there.

The message here is that larger, more complex systems, while built upon the fundamental laws of their reduced counterparts, display unique phenomena of their own. We can continue to reduce complex systems to smaller scales. In doing so, complexities and phenomena of the larger systems are lost. Starting only with knowledge from the fundamental laws, can we predict all of the phenomena of the larger scales, without prior knowledge of those phenomena? Probably not. This is another kind of broken symmetry, where traverse fields in an intensive direction will lead one in the formulation of a fundamental laws, but traversing in the extensive direction from those fundamental laws will lead to more and more possibilities that need not be the one from where we started. As scales grow, so too does the probability of broken symmetry.

Thus, when stating that “X is just applied Y,” remember ammonia.

Relevant.