Archives For space

A Musician on Mars

December 11, 2013 — 1 Comment


Welcome to Mars. As one of the first colonists on the fourth planet from the Sun, you endeavor to make it your new home. On Earth, you filled your time in numerous ways, but your real passion was music. Luckily, the Indian Space Research Organisation (ISRO) allowed you to bring your prized possession: a Steinway grand piano. Excited to play for the first time in months, you squeeze into your ISRO-issued space suit and wheel the piano onto the Martian surface. It’s noon near the equator. The temperature is around 25ºC (77ºF). You stretch out your arms, relax, and strike your first key. The sound is… quiet and out of tune. Assuming the piano needs to be retuned, you wheel it back into your pressurized vessel, take off your suit, and tune it yourself. Satisfied, you wheel the piano onto the surface again. The Martian surface is quiet, and you notice the colors of the sky are a lot redder than you had seen in NASA photographs. Again, you begin to play. It again sounds too quiet.

What is happening here? Why might a piano sound different when played on the Martian surface? This is a fairly involved question. Luckily, we are considering an instrument with taut strings rather than something that depends more upon atmospheric conditions than, say, a trombone or pipe organ. Furthermore, the equatorial temperature is Earth-like. Why, then, might a piano sound different on Mars?

When tuning and subsequently playing a piano, the frequency you perceive (or pitch) depends upon the tension, length, and mass of the strings within the piano. Since the temperature is about the same as before, and since you did not physically exchange the strings, these properties remain fairly constant. However, the fluid on the strings does play a role. Like any oscillator, the fluid in which it is immersed provides a load which will subsequently alter the frequency at which the oscillator resonates and by how much. On Mars, the atmosphere is more rarified, with a mean pressure of 600 Pa at the surface. Compare this with a pressure of over 100,000 Pa at sea level on Earth. This reduced loading by air results in a bias to slightly higher frequencies (or a higher pitch). If you retuned the piano in a pressurized cabin and then played the newly tuned piano on the Martian surface once again, it would still sound out of tune. A simple solution is to retune the piano while on the surface.

However, this is not the only problem with playing music on the Martian surface. Remember that Mars has a lower-pressure atmosphere. Sound, as you may recall, propagates as an oscillation of pressure in some medium (like air). If the mean pressure is lower, this presumably changes the ability of sound to propagate over longer distances. Without going into too many details here, what happens is that sound will not propagate very far on Mars, and there is an effect such that high frequencies are heavily attenuated. Before, the pitch was shifted slightly higher. Here, on the other hand, higher frequencies will sound softer than lower frequencies, and all frequencies will sound quieter. This means that not only does the piano sound out of tune, but it also sounds muted. The question of sound propagation is so interesting that an acoustics researcher simulated sound on Earth, Mars, and Titan. She found that a scream which may travel over one kilometer on Earth would only carry 14 meters on Mars!

Your out-of-tune, muted piano, probably wouldn’t be audible to a nearby audience on the Martian surface.

For the first part of this series and to learn a bit more about 3D reconstruction of computed tomography (CT) slices, check out NEURODOME I: Introduction and CT Reconstruction. Our Kickstarter is now LIVE!

“As I stand out here in the wonders of the unknown at Hadley, I sort of realize there’s a fundamental truth to our nature. Man must explore. And this is exploration at its greatest.” – Cdr. David Scott, Apollo 15


It is official. Our Kickstarter for NEURODOME has launched. I have already described a bit about my role in the project and described CT reconstruction. Future posts will delve into fMRI imaging and reconstruction, along with additional imaging modalities and perhaps a taste of medical imaging in space. You might be surprised at the number of challenges astronauts had to take while aboard rockets, shuttles, and the ISS. All of this will be part of the NEURODOME series.

With our launch, we hope to raise enough funds to develop a planetarium show that illustrates our desire to explore. To do so, real data will be used in the fly-throughs. Our first video, The Journey Inward, provides a basic preview of what you might expect.

I will continue to post about this project but, for now, read about NEURODOME on our website and, if you can, help fuel our mission!

A couple weeks ago, Felix Baumgartner set the record for the longest free fall, previously held by Captain Joseph Kittinger. To be more specific, Baumgartner dove from 39 kilometers in 2012, and Kittinger dove from 31 kilometers in 1960. However, Baumgartner traveled faster, with his total dive taking 17 seconds less than Kittinger’s. This was the true feat, as he reached 1,342 kilometers per hour, thus breaking the sound barrier.

At 39 kilometers, how high up was Baumgartner? This is 8% short of a full marathon, the distance of 4.4 Mount Everests stacked atop one another, and 3.6 times the greatest depth of the ocean. At this height, the temperature is only -25.6 C, the pressure is only 1/3 of that on the ground, and the effect of gravity was still 98-99% of what it would be at sea level. His maximum speed of 1.1 Mach (the speed of sound in dry air at 15 C and 1 atm) was just 13% short of the maximum speed of the X-1 rocket plane. In other words, he was moving very fast from an extreme height.

If you want to consider how this might affect a human, you must consider not speed, but acceleration. With the Stratos jump, it took Baumgartner 42 seconds to reach his terminal velocity. This is pretty quick. How did he do it? When in free-fall, we can consider two forces, drag and gravity. I noted above that the effects of gravity were reduced, but not by much, at this elevation (to 9.7 meters per second-squared, to be specific). The force of drag acting on a body is dependent upon its velocity. So, as you fall and gain speed, the effects of drag become greater. Eventually, drag force becomes great enough such that you cannot accelerate any further from gravity, and you reach terminal velocity. This is usually 25 m/s for most objects. However, Baumgartner was in the stratosphere. The air pressure, as I mentioned above, was only 0.33 that of what is at sea level. With such low air density, the effects of drag are reduced. The force of acceleration, relatively unchanged, provides a strong downward force (toward the Earth). This leads to a very high terminal velocity, one that can break the sound barrier. (I should note that the speed of sound is reduced at high elevation because sound propagation is dependent upon the density of the medium through which the wave travels.)

What does this have to do with acceleration, then? We know his speed was significant, and we know he did it quickly. According to the argument above, the only real force leading to acceleration is gravity, and we have an upper limit of 9.7-9.8 m/s^2. The numbers reported agree with this, with an average acceleration of about 8.8 m/s^2. Is this fast enough to hurt a human? Again, what matters is accelerationnot speed. This discussion started in WWI, where pilots reported vision problems with high-acceleration maneuvers. Today, we see it ranging from the design of rockets by NASA to safety reports in four-door sedans. If we look back at other human endeavors, we see a story of high acceleration. The now-retired shuttle missions accelerated astronauts to three times the force of gravity. The Apollo missions entered the atmosphere at six times the force of gravity upon their return home. However, the highest reported cases were with the Daisy Decelerator in the 1970s. Major Beeding was placed in this capsule, and he was decelerated at 83-times the force of gravity for approximately 0.04 seconds. He survived, emerging with a short period of shock and a bruised back. While I wouldn’t claim that most humans could survive such an extreme scenario, this demonstrates the importance of acceleration over total speed. With Baumgartner traveling at <1g (less than one times the force of gravity), this provided little danger.

Whether or not this provided a danger to the diver, it was an exciting watch. Whether or not it advanced our knowledge of the stratosphere, it gave me a fun topic for this blog post.